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Topics:

Introduction

Forced Signal vs. internal variability
Concepts and logic of detection & attribution
Fingerprinting [~25min]

B~

(1) Non-optimal fingerprinting
(2) Optimal fingerprinting
5. Non-standard approaches
(1) Dynamical adjustment: Dynamical vs. thermodynamical trends [10 min]
(2) Signal/Noise maximizing pattern filtering [10 min]
(3) Statistical and machine learning to extract the forced response [10 min]

E'HZUI’IC/’) Institute for Atmospheric and Climate Sciences 08.06.22



Beyond the global mean: Fingerprinting Detection

,‘{‘A

NWA
P 0o

Mz

"it is necessary to regard the signal
and noise fields as multi-
dimensional vector quantities and
the significance analysis should
accordingly be carried out with
respect to this multi-variate
statistical field, rather than in terms
of individual gridpoint statistics”

Klaus Hasselmann, 1979



Beyond the global mean: Fingerprinting Attribution

“Attribution analyses are necessarily limited to tests of
consistency. Even if it has been shown that a detected
climate change signal is consistent [...] within a finite set
of candidate mechanisms, it can never be ruled out that
there exist other, overlooked forcing mechanisms, that
could also produce the observed climate change signal.”

Klaus Hasselmann, 1997
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Pressure (hPa)

The “fingerprint” of external forcing agents
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Total linear temperature change from 1890 to 1999 (°C per century)

Fingerprinting D&A is based on the spatial, vertical,
temporal or multivariate patterns of change, which are

different for different forcings



Fingerprinting: General assumptions

« Key forcings have been identified

« Signals are additive

* Noise is additive

« Large-scale patterns of response are correctly
simulated by climate models

« Evaluation of internal variability as simulated by
models is consistent with observations (i.e., with

residual)



“Non-optimal” fingerprinting

1. "Fingerprints” to encapsulate physics-informed
change signals from model simulations
(“Forced response”)

2. Observations and simulations of internal
variability are projected onto “fingerprints”:

_ (F ’ Xobs)

IF||
MODEL AVERAGE (TLT)

Santer et al., 2012, PNAS
Santer et al., 2019, NClim



“Non-optimal” fingerprinting
Are observations becoming “more similar” to the
1. "Fingerprints” to encapsulate physics-informed fingerprint pattern?
change signals from model simulations
(“Forced response”)

2. Observations and simulations of internal

Last year of L-year trend

. .. . "ee . " 1990 1995 2000 2005 2010 2015
variability are projected onto “fingerprints”: N S
— RSS
| — SsTAR
IF|l
MODEL AVERAGE (TLT) s
&
3 50 threshold /\
o
s
% 4
&%) 3o threshold
2_
b AT L
Santer et a|., 2012, PNAS 10 15 20 25 30 35 40

Santer et al., 2019, NClim Trend length L (years)



A Smoothed Zonal Average P

“Non-optimal” fingerprinting: . . . . . . .
6 -
Water cycle example
6
nee .o L, 5+
Fingerprint”: =
* precipitation intensity changes at local =
extrema £ 4} ;
S i
* Latitudinal shifts as “"dynamic indicators” ©
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Marvel et al., 2013, PNAS I—atltUde



“Non-optimal” fingerprinting: Water cycle example

EOF loading
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“Non-optimal” fingerprinting: Water cycle example

EOF loading
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Marvel et al.,
2013, PNAS
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Projection

“Non-optimal” fingerprinting: Water cycle example

3 Obls Projections oln F,, (D,T) | B 05 Model Projections on F,, (D, T) (33-year trends) Projection of
. A|_I|_3 | | | | .
5| B s observations onto
mmm ALLS )
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2 : e
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Marvel et al.,
2013, PNAS
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Optimal fingerprinting: Attribution recipe

« Optimal fingerprinting “optimizes” (rotates) the direction in which
the signal is detected/attributed against (an estimate of) internal
variability

« Optimal fingerprinting is framed as a regression problem, in which
model fingerprints (e.g., space-time) are taken to “interpret” the

observations

Ly

\  optimal signal-to-noise
A direction

P g

guessed response

Vel
a

>“p1
L

noise ellipsoid

13



Optimal fingerprinting: Attribution recipe

Observed, 1901-2005

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Temperature trend

Trend in °C per decade

(°C per 50 years)

v + climate variability

15

i L A L i
MIROC3.2 PCM  UKMO-HadCM3 GFDL-R30 EIV
{modres)

Models used in analysis

Hegerl et al.
(2011), Wiley
Interdisciplinary
Reviews Clim
Change
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Optimal fingerprinting: Attribution recipe

Observed, 1901-2005

Trend in °C per decade

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

+ climate variability

1.0F

0.5k

o Hegerl et al.

3 (2011), Wiley
h?:o?!?eif PCM UKMO-HadCM3 GFDL-R30 EIV In terdISCIpllnary
Models used in analysis . .
Reviews Clim
Change

Temperature trend
(°C per 50 years)

-05F

-1.0E

« Optimal fingerprinting is framed as a
regression problem, in which model
fingerprints (e.g., space-time) are taken to

“interpret” the observations:

S
Y = Z,BiXi + &
=1

Y Observations,

X Expected changes (“space-time fingerprints”),

B; Regression coefficients for factor i (“scaling
factors”),
€; Internal variability.

* The goal is to estimate scaling factors and
their confidence intervals

15



Optimal fingerprinting: Interpretation

Detection is achieved when scaling factors do
not include 0 in their confidence intervals
(inconsistent with internal variability)
Attribution is achieved when scaling factors
include 1 in their confidence intervals

Scaling factors reveal amplitude information

about the respective forcing

1850-1900 (°C)

Attributable change 2010-2019 versus ®

Gillett et al. (2021),
Nature Climate Change

16



Notes on optimal fingerprinting

State-of-the-art algorithm for D&A

“Small-sample” statistical problem and high spatio-temporal correlations
require careful statistical application (questions on X, 8 and ¢)

"Optimal” means that regression is performed in a S/N maximized space,
which is derived through estimating the covariance matrix C of internal
variability (from models)

Typically regression is performed in a dimension-reduced space (in EOF
coordinates of internal variability, for example)

Uncertainty in scaling factors must be assessed with a second, statistically
independent estimate of the covariance matrix C

Different algorithms to solve the regression problem are in frequent use
with different estimates of error structures

Residual variance in observations must be consistent with model

estimated internal variability (“residual consistency test”)

S
Y = ZﬁiXi + &
=1

Y Observations,

X Expected changes (“space-
time fingerprints”),

B; Regression coefficients for
factor i (“scaling factors”),

€; Internal variability

Further information (and
references):

Hegerl and Zwiers 2011
WIRE Clim Change



Summary: Fingerprinting

« The goal of fingerprinting studies is to test whether a fingerprint (i.e.,
spatio-temporal, vertical, multivariate, etc.) of a given external

forcing, usually given by a physics-based climate models, can be
shown to have influenced the observations

* ("Non-optimal”) methods based on projections onto the signal
vector, or based on pattern correlations

« Optimal fingerprinting aims to test for the difference external
influences in a S/N maximized space

E'HZUI’IC/’) Institute for Atmospheric and Climate Sciences 08.06.22
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Topics:

1. Introduction

(1) Large-scale changes in the Earth system and IPCC statements
(2) The issue of cause and effect (and why correlation is *not* attribution)
(3) Earth’s energy budget and imbalance

Forced Signal vs. internal variability

Concepts and logic of detection & attribution

Traditional fingerprinting

Non-standard approaches

(1) Dynamical adjustment: Dynamical vs. thermodynamical trends
(2) Pattern filtering

(3) Statistical and machine learning to extract the forced response

o kb

E'HZUI’ICh Institute for Atmospheric and Climate Sciences 08.06.22 19



Dynamical adjustment: Dynamical vs. thermodynamical trends

Temperature anomaly (°C)

Warmest

Coolest

-6 -5-4-3-2-1 01 2 3 45 6
Temperature trend (°C per 55 years)

Figure 1| Range of future climate outcomes. a, December-January-February (DJF) temperature trends during 2005-2060. Top panel shows the average

Deser et al., 2012, Nat. Clim. Change
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Internal variability fundamentally limits
climate projections
Strong implications for interpretation of

regional climate trends

* 45 model simulations with one
climate model (=same physics)

* 55 year temperature trend maps,
starting 2006
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Dynamical adjustment

* Internal variability fundamentally limits
circulation and temperature

e Dynamical component i . L
anomalies in month x Y P Thermodynamical component climate projections

 Strong implications for interpretation of

i 'c"--.-,‘\" ARV \‘ 1/ 3 . .
g L j@ oL }@ | < regional climate trends
» Dynamical adjustment: extraction of

Figure Courtesy: Dr. Anna Merrifield regional climate signals using circulation

information (a very established idea!)

In-depth introduction to dynamical
adjustment:
Deser et al (2016) Journal of Climate.

Forced and Internal Components of Winter Air Temperature Trends over North
America during the past 50 Years: Mechanisms and Implications™

CLARA DESER

Climate and Global Dynamics Division, National Center for Atmospheric Research,” Boulder, Colorado

E'HZUI’ICh Sebastian Sippel - Climate Attribution
LAURENT TERRAY



Dynamical adjustment

Internal
Variability

dynamical
internal

Atmospheric
Circulation X
(SI—Panom)

Target Variable Y
(Precip., Temp.)

J

E'HZUI’ICh Sebastian Sippel - Climate Attribution

:

External
orcing (F)

Internal variability fundamentally limits
climate projections
Strong implications for interpretation of

regional climate trends

Dynamical adjustment: extraction of
regional signals using circulation
information

Statistical learning method (ridge
regression) to encapsulate the circulation

information into a statistical model

Sippel et al., 2019, Journal of Climate, 32,
5677-5699.

08.06.22 22



Dynamical adjustment

* Internal variability fundamentally limits

climate projections

1e-05
 Strong implications for interpretation of
regional climate trends
5e-06
9
5
g2 ¢ Dynamical adjustment: extraction of
~ 0e+00 &
oS regional signals using circulation
©
i . :
information
-5e-06
 Statistical learning method (ridge
regression) to encapsulate the circulation
-1e-05

information into a statistical model

Sippel et al., 2019, Journal of Climate, 32,
5677-5699.
ETH:zurich Sebastian Sippel - Climate Attribution 08.06.22 23



Dynamical adjustment: lllustration in a large ensemble

3 Py L
Ensemble Member #1 Ensemble Member #1, Residuals
\
A1, "'1 ,| ”N ~0:6 0.5
I “‘]. " A "
il M"" R :
\ 1 - 05 - 05
— Ensemble mean (81 - 021)
P R a0k — -1 Ny s s — -1
Predction, EOF datrend. o st
' T 1 L4 I' Al L4 ] L L) Al ' A Al LS l Al Ll ) ‘ L T v ’ T Ll P —1 -5 I T ) L ' 1 LS 1) ' L | M Al [ " ) L _| L LJ ) ' L) L L] r A . L —1 -5
1960 1980 2000 2020 2040 2060 2080 2100 1960 1980 2000 2020 2040 2060 2080 2100

® Winter precipitation, North Europe
® Method application: CESM 1.2.2 21-member ensemble, HIST+RCP8.5

Sippel et al. (2019), J. Clim., doi:10.1175/JCLI-D-18-0882.s1

ETH:zurich Sebastian Sippel - Climate Attribution 08.06.22 24



Dynamical adjustment: Understanding abrupt winter climate change in
Switzerland

N .

Cold Season Temperature Anomaly [°C]
o
|

—3 lllIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIII
1950 1970 1990 2010

Years

ETH: uric h Sebastian Sippel - Climate Attribution 08.06.22 25



An abrupt winter climate change in Switzerland?

ﬂ :Global Change Biology

Global Change Biology (2016) 22, 682703, doi: 10.1111/gcb.13106

f\n Global impacts of the 1980s regime shift

1 V PHILIP C. REID"??, RENATA E. HARI*, GREGORY BEAUGRAND'"®, DAVID M.

LIVINGSTONE!, CHRISTOPH MARTY®, DIETMAR STRAILE”, JONATHAN

Regime shift of snow days in Switzerland

Christoph Marty'

Received 19 March 2008; revised 15 April 2008; accepted 7 May 2008; published 17 June 2008,

-1 [1] The number of days with a snow depth above a [3] This work

- ISSN: 2044-2041 (Print) 2044-205X (Online) Journal homepage: http//www.tandfonline.com/lol/tinw

Cold Season Temperature Anomaly [°C]
o
|

-2 — The physical impact of the late 1980s climate
regime shift on Swiss rivers and lakes
Ryan P. North, David M. Livingstone, Renata E. Hari, Oliver Koster, Pius
—3 LI L L LI IR BRI ILNLEL L LB Niederhauser & Rolf Kipfer
1950 1970 1990 2010
Years

ETH:zurich Sebastian Sippel - Climate Attribution 08.06.22 26



An abrupt winter climate change in Switzerland?

2 ﬂ ZEITZELONLINE

Tagesodustiger
Ginther Aigmer

1 — i Ade Schnee "'MSkisport wird zum Luxus”

Die Winter in den Alpen sind kilter geworden - dennoch
Wo ist es noch schneesicher? Wie viele Schneetage 33 Schweizer Orte in Skigebiete keine Zukunft. Warum? Ein Gespriich mit dem Skit
den letzten 30 Jahren verloren haben

Experten Gunther Aigner
Patrich Vgell und Marc Brupbaches Inter shtiy Team

Von Uwe Jean Heuser

29.Dezember 2018, 00:00 Uhr Klima

N Schneewar’s

_1 _ Langzeitstudien zeigen, dass in den Alpen und auch im (ibrigen Europaimmer
weniger Schnee liegen bleibt. Das ist nicht nur fiir Wintersportler ein Problem.

Spektrum

-2 | Bleiben die Alpen auch zukiinftig weill?
schnee - und kein Ende in Sicht: Das legt eine Wintersportstudee nat

wird es in den Bergen tatsachlich gegen den Trend k

Cold Season Temperature Anomaly [°C]
o
|

_3 IIIIIIIIIIllllIIIIIIIIIIIIIIIIIIIII SRR L
1950 1970 1990 2010

Years

ETH:zurich Sebastian Sippel - Climate Attribution 08.06.22 27



Dynamical adjustment: Understanding abrupt winter climate change in
Switzerland

ETHzirich

Sebastian Sippel - Climate Attribution

Switzerland

—
Cold Season Temperature Anomaly 'C]
A —

—

|

| R (Orig. Pred ; devunded) = 0.77

-3 SR BT PURE I""'l""l""l""
1950 1960 1970 1980 1990 2000 2010 2020

At regional scales, circulation-induced
variability explains a large fraction of

temperature variability

Sippel et al., 2019, Environmental
Research Letters, 15, 094056.
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Dynamical adjustment: Understanding abrupt winter climate change in Europe

and Switzerland

Switzerland
(b) 4 .
g
g
3 \
a3
e P
;
i
3
(3] .
R (Orig.. Pred ; detrended) = 0.77
-3 SURIE EVESRELE PLULIEELS RLEELIEE TSR LR BUE S LA,
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d
@ |
£ 2
g
S Ve VA RYA' '
3 -2 = Original time series
Q - Prediction: Circulation
- Residuals
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E'HZUI’ICh Sebastian Sippel - Climate Attribution

At regional scales, circulation-induced
variability explains a large fraction of
temperature variability

Residuals of circulation-induced variability
reveal a smooth (thermodynamical) signal of

change

Sippel et al., 2019, Environmental
Research Letters, 15, 094056.
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Summary Dynamical adjustment

* Dynamical adjustment is a technique to decompose observed or simulated trends
into dynamical and residual (that contain thermodynamical) trends. This is not
exactly a separation into forced and internal components, but it helps

understanding

» Various methods exists, based on circulation analogues, EOF regression, statistical

learning, etc.
* The apparent climate regime shift in Switzerland and in Europe can be explained

as a combination of unusual atmospheric circulation combined with a smooth

forced thermodynamical trend

ETH:zurich Sebastian Sippel - Climate Attribution 08.06.22 30



Topics:

1. Introduction

(1) Large-scale changes in the Earth system and IPCC statements
(2) The issue of cause and effect (and why correlation is *not* attribution)
(3) Earth’s energy budget and imbalance

Forced Signal vs. internal variability

Concepts and logic of detection & attribution

Traditional fingerprinting

Non-standard approaches

(1) Dynamical adjustment: Dynamical vs. thermodynamical trends
(2) Signal/Noise maximizing pattern filtering

(3) Statistical and machine learning to extract the forced response

o kb
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Slides adapted

Pattern recognition to extract forced patterns with permission

Observed Trend (1980-2005)

1.5°C
1.0
0.5
0.0
-0.5
-1.0
=15

Zhou et al. 2016
E'HZUI’ICh Sebastian Sippel - Climate Attribution

from R. Wills

Understanding differences across forced patterns across
models and observations via isolating forced patterns:

Model evaluation

Predicting the future of warming (feedbacks, climate
sensitivity)

Understanding multi-decadal variability and differences
across models

32



Slides adapted
with permission

Pattern recognition to extract forced patterns ith per e

S/N-Maximizing Pattern Analysis — used to separate signal and
noise within a single dataset (e.g., a climate model ensemble) S
N

« Using pattern information helps to characterize the time
evolving pattern of climate change with fewer ensemble S
members (compared to an ensemble average) and to analyze

structural uncertainty in climate projections

MPI (100)

Can pattern information be
used to reduce the
ensemble size needed to
separate signal from noise?

E'HZUI’ICh Sebastian Sippel - Climate Attribution Gra phic from uscliva r.org, Flavto Lehner



Slides adapted

Signal-to-noise ratio and the utility with permission
of pattern information

10" Global-mean surface temperature

Signal-to-Noise Raio @~ & T T oo TTT T T TTooo

o
l's Gridpoints
o

0O 10 20 30 40 50 60 70 80 90 100
S/N-Maximizing Pattern #

* Global-mean surface temperature has a factor
of three higher signal-to-noise ratio (5/N) than

1/32 1/16 1/8 1/4 1/2 1 2 any Slngle grld pOlnt
« Large ensembles (CESM-LE in this case) * The leading S/N-maximizing pattern has a S/N
help to quantify the amplitude of the ratio that is higher still; an order of magnitude
forced signal and of internal variability higher than any grid point

« Patterns thus help to separate signal and noise

ETH:zirich Wills, Sippel, Barnes (2020, US CLIVAR Variations)



Slides adapted

with permission

Signal-to-noise maximizing patterns from R. Wil

Fingerprint of S2N Maximizing Pattern 1 ' " " — —
- - o]
P . S e o ___ Globalmean surface temperature
L x > T = = S 0 B
: 5 P, % = b \ X SN b= °
' o : % 0 % Gridpoints
@ 10773
(ZD (o]
<!
T 107
>
wn
1072
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S/N-Maximizing Pattern #
4 | - - -
T(X t) 2 S2N Maximizing Pattern 1 (stdev.)
) i
2 =l
1 =)
o =

T(x,?)
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Year

Wills, Sippel, Barnes (2020, US CLIVAR Variations); Wills et al. (2020; J. Climate); Ting et al. (2009)



. . e e e Sliides ada'pt.ed
Isolating the forced response with S/N-maximizing with permission

from R. Wills
pattern filtering

« Construct the
spatiotemporally
varying forced

%]

S 4

response by

.l

D . .

combining all of the
g _12920 1 9I40 1 9I60 1 9‘80 20‘00 20I20 -‘?920 1 9:10 1 9‘60 1 9I80 20|00 20‘20 0

S/N-maximizing
patterns that are
significant (could not
have occurred due to
random chance)

S/N-maximizing Pattern 3 E . |f|
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< I 1 I I I 1 1 I
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ETHzurich Wills et al. (2020, J. Climate) — Analysis of CESM Large Ensemble



Slides adapted

Testing within large ensembles: S/N-maximizing pattern i permission

from R. Wills

filtering improves estimate of the forced response estimate

Pac. East-West SST Diff. (°C)

US Temp. 30-45°N (°C)

ETHzirich
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Wills et al. (2020, J. Climate) — Analysis of CESM Large Ensemble



Slides adapted
Filtering with S/N-maximizing patterns identifies with pormisior

from R. Wills
forced response with fewer ensemble members

Ensemble members needed to identify forced temperature response (based on 80% correlation?)

Simple Ensemble Mean

=

60N

30N Average grid point: 4 (>20)

B Pattern Filtering (Simple Ensemble Mean)

30S .
Large-Scale Indices:

Global mean: 2 (4)

Based on 95% correlation?

North Atlantic SST: 3 (9)

60 S

90°E 180° 90°W
Pattern Filtering

60°N |58
Pacific SST gradient: 9 (>20)

Based on 30% correlation?

30°N | °
EQ{t 4

1 US temperature: 2 (>20)

60°S 1

ETHzurich Wills et al. (2020, J. Climate) — Analysis of CESM Large Ensemble



Summary: Pattern recognition to extract forced patterns

S/N maximizing pattern filtering is a technique to extract patterns of the forced

response in large ensembles, using pattern recognition techniques.

« Can be very helpful to understand structural uncertainties across models.

« Extensions exist to apply a similar technique, “low-frequency component analysis”
to observations (with the criterion to filter for low-frequency patterns). See

Schneider & Held (2001) and Wills et al. (2020) Journal of Climate.

* Pattern filtering techniques and dynamical adjustment aim both to extract different
forced/unforced or dynamical/thermodynamical components, and thus differ in the

assumptions (time scale separation, relative influence of atmopheric circulation).

ETH:zurich Sebastian Sippel - Climate Attribution 08.06.22 39



Topics:

1. Introduction

(1) Large-scale changes in the Earth system and IPCC statements

(2) The issue of cause and effect (and why correlation is *not* attribution)
(3) Earth’s energy budget and imbalance

Forced Signal vs. internal variability

Concepts and logic of detection & attribution

Traditional fingerprinting

Non-standard approaches

(1) Dynamical adjustment: Dynamical vs. thermodynamical trends

(2) Signal/Noise maximizing pattern filtering

o kb

(3) Statistical and machine learning to extract the forced response

E'HZUI’ICh Institute for Atmospheric and Climate Sciences 08.06.22 40



Statistical and machine learning to extract the forced response

1 Mazatlan, Mexico

‘ Donald J. Trump & ¥

@realDonaldTrump

Phoenin. Arisons Brutal and Extended Cold Blast could shatter ALL RECORDS -
*7 Whatever happened to Global Warming?
°] O 113K 1:23 AM - Nov 22, 2018 @
-2

; Seattle, Washington

O 119K people are talking about this >

Temperature anomaly (°C)

Warmest

United States

2
o]
2
27 Globe M
Coolest . 4 - 0 _WA\/"“A'V‘V‘V At \»\[\i\r'VMVN\‘
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Temperature trend (°C per 55 years) Year

Figure 1| Range of future climate outcomes. a, December-January-February (DJF) temperature trends during 2005-2060.
Deser et al., 2012, Nat. Clim. Change
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Donald J. Trump & @realDonaldTrump - Nov 22, 2018 ¥
Brutal and Extended Cold Blast could shatter ALL RECORDS -
Whatever happened to Global Warming?

ﬂ Bill McKibben &
e @billmckibben

| know you're Mr. America-is-all-that-matters, but climate is

actually a global phenomenon.

Here's today's global weather

map (oh, and red=hot.) As a whole, Earth is about 1.2 degrees
above preindustrial temps today pic.twitter.com/kRaGd7cZF3

1,834 1:40 AM - Nov 22, 2018

NCEP GFS forecast vs CFSR reanalysis @0.5deg
Run: 18 Nov 2018 18z

0

7 day forecast mean (168h)
Reference: 18 Nov 2018 18z

Temperature anomaly 2m (°C)
90E
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-20-18-16-14-12-10 -9 -8 -7 -6 -5-45-4-35-3-25-2-1.5-1-05051 152253 354455 6 7 8 9 101214161820

Anomaly global: 0.584K

(c) Karsten Haustein

NH: 0.846K

SH: 0.322K 90N-60S: 0.552K

Climatology for 1981-2010 reference periad (5 day running mean) | GISS adjusted
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Can we identify a Cllmate change

1991-09-13

2002-03-06

2016-05-13 2014-09-17 2011-10-31 2012-11-04 2010-01-07

E'HZUFiCh 08.06.22 44



Detection method

. . m . n n X RP
1. Learn ,fingerprint” (B) from climate model YeR X e R**P pe

simulations

X = daily pattern of temperature

Y = climate change proxy (annual
global mean temperature)

Regularized linear model: Y = XB + ¢

B = argming Eyyy~p[l(y, f5(0)]
= argming |Y —XB I3 +A 1l B I}

Y= fp(x)

target metric
(annual global
mean temperature)

fingerprint

Image Credit:
Eniko Székely

global daily temperature maps

Szekely et al., 2019, Climate Informatics. doi:10.5065/y82j-£f154
Sippel et al., 2020, Nature Climate Change. doi:10.1038/s41558-019-0666-7
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Detection method

. .y , n . -
1. Learn ,fingerprint” (B) from climate model YeR X e R"*P pe

simulations

X = daily pattern of temperature

Y = climate change proxy (annual
global mean temperature)

Regularized linear model: Y = Xp + ¢

2. Project observations onto fingerprint to obtain
climate change test statistic

target metric
(annual global
mean temperature)

fingerprint

Image Credit:
Eniko Székely

global daily temperature maps

Szekely et al., 2019, Climate Informatics. doi:10.5065/y82j-£154
Sippel et al., 2020, Nature Climate Change. doi:10.1038/s41558-019-0666-7
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Daily detection “Fingerprint”

Detection method

1. Learn ,fingerprint” () from climate model
simulations

X = daily pattern of temperature

Y = climate change proxy (annual
global mean temperature)

Temperature coefficients (x107%)

: : C TEEE——
Regularized linear model: Y = X + ¢ <0 0.4 0.8 12 >1.6

(4]

2. Project observations onto fingerprint to obtain [ Predictors (mean included): Temp.

climate change test statistic 1.0 7 - Reanalysis avg., daily predictions
_ — Reanalysis avg., AGMT

CMIP5, 1870-1950

Temperature anomaly w.r.t. 1979-2005 (°C)

Sippel et al., 2020, Nature Climate Change. doi:10.1038/s41558-019-0666-7
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Daily detection “Fingerprint”

Detection method

1. Learn ,fingerprint” () from climate model
simulations

X = daily pattern of temperature

Y = climate change proxy (annual
global mean temperature)

Temperature coefficients (x107%)

: : C TEEE——
Regularized linear model: Y = X + ¢ <0 0.4 0.8 12 >1.6

(4]

2. Project observations onto fingerprint to obtain [ Predictors (mean included): Temp.

climate change test statistic 1.0 7 - Reanalysis avg., daily predictions
_ — Reanalysis avg., AGMT

CMIP5, 1870-1950

Temperature anomaly w.r.t. 1979-2005 (°C)

Sippel et al., 2020, Nature Climate Change. doi:10.1038/s41558-019-0666-7

E'HZUI“IC/? Sebastian Sippel - Science Talk for Climate Attribution 08.06.22 48



Summary: Statistical and machine learning to extract the forced response

« Statistical learning based
detection and attribution of
global climate change reveals
the fingerprint of change

« Approach allows interpretation
of short-term climate signals.
Provides a link between
“traditional” attribution and
event attribution

E'HZUFIC/‘) Sebastian Sippel - Science Talk for Climate Attribution



Summary: Statistical and machine learning to extract the forced response

» Statistical learning based Geophysical Research Letters s

detection and attribution of RESEARCH LETTER  Viewing Forced Climate Patterns Through an Al Lens
] 10.1029/2019GL084944
global climate change reveals Elizabeth A. Barnes' ©, James W. Hurrell* @, Imme Ebert-Uphot?*®,
: : s Chuck Anderson®® ", and David Anderson®
the fingerprint of change e ot 0 e
» Neural networks can identify forced <
patterns of surface temperature and '"Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA, *Cooperative Institute for
precipitation amidst climate noise Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA, *Department of Electrical and Computer
. . and model disagreement Engi e Colorado State CRE AT, | Pie s C T X - 0 PRy z ?
° e . o gineering, Colorado State University, Fort Collins, CO, USA, "Department of Computer Science, Colorado State
Ap p roa Ch a | |OWS | nte rp retatl on v Jiemenindieiing paKamazaliooed University, Fort Collins, CO, USA, “Pattern Exploration LLC, Fort Collins, CO, USA

change are present in the

of short-term climate signals.
Provides a link between
“traditional” attribution and (a) Network Architecture

event attribution

; Input layer
* Neural networks are being used r(’yeuow\’/ Hidden layers  Output laver
in addition to linear pattern (blue) (red)
.. . Each yellow unit =
recognition/stat. learning temp at one grid point ..

methods to identify

estimates/proxies of the forced ‘ -------

response (Barnes et al. 2019, s ———
2020)

, T--* Year estimate
(1920, 1921, ...

\
/ 2099, 2100)

><

N
» e
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Topics Covered in “Trend attribution” — Overview lecture

0

ETHzirich

Introduction

(1) Large-scale changes in the Earth system and IPCC statements
(2) The issue of cause and effect (and why correlation is *not* attribution)
(3) Earth’s energy budget and imbalance

Forced Signal vs. internal variability

Concepts and logic of detection & attribution

Fingerprinting

(1) Non-optimal fingerprinting

(2) Optimal fingerprinting

Non-standard approaches

(1) Dynamical adjustment: Dynamical vs. thermodynamical trends
(2) Signal/Noise maximizing pattern filtering

(3) Statistical and machine learning to extract the forced response

Institute for Atmospheric and Climate Sciences

08.06.22
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